skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hogancamp, Matthew"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We construct a Kirby color in the setting of Khovanov homology: an ind-object of the annular Bar-Natan category that is equipped with a natural handle slide isomorphism. Using functoriality and cabling properties of Khovanov homology, we define a Kirby-colored Khovanov homology that is invariant under the handle slide Kirby move, up to isomorphism. Via the Manolescu–Neithalath 2-handle formula, Kirby-colored Khovanov homology agrees with the\mathfrak{gl}_{2}skein lasagna module, hence is an invariant of 4-dimensional 2-handlebodies. 
    more » « less
    Free, publicly-accessible full text available February 17, 2026
  2. Abstract We introduce a multiparameter deformation of the triply‐graded Khovanov–Rozansky homology of links colored by one‐column Young diagrams, generalizing the “y‐ified” link homology of Gorsky–Hogancamp and work of Cautis–Lauda–Sussan. For each link component, the natural set of deformation parameters corresponds to interpolation coordinates on the Hilbert scheme of the plane. We extend our deformed link homology theory to braids by introducing a monoidal dg 2‐category of curved complexes of type A singular Soergel bimodules. Using this framework, we promote to the curved setting the categorical colored skein relation from our recent joint work and also the notion of splitting map for the colored full twists on two strands. As applications, we compute the invariants of colored Hopf links in terms of ideals generated by Haiman determinants and use these results to establish general link splitting properties for our deformed, colored, triply‐graded link homology. Informed by this, we formulate several conjectures that have implications for the relation between (colored) Khovanov–Rozansky homology and Hilbert schemes. 
    more » « less
  3. null (Ed.)
    Abstract We study two kinds of categorical traces of (monoidal) dg categories, with particular interest in categories of Soergel bimodules. First, we explicitly compute the usual Hochschild homology, or derived vertical trace, of the category of Soergel bimodules in arbitrary types. Secondly, we introduce the notion of derived horizontal trace of a monoidal dg category and compute the derived horizontal trace of Soergel bimodules in type $$A$$. As an application we obtain a derived annular Khovanov–Rozansky link invariant with an action of full twist insertion, and thus a categorification of the HOMFLY-PT skein module of the solid torus. 
    more » « less
  4. null (Ed.)
    We introduce a new method for computing triply graded link homology, which is particularly well adapted to torus links. Our main application is to the $(n,n)$ -torus links, for which we give an exact answer for all $$n$$ . In several cases, our computations verify conjectures of Gorsky et al. relating homology of torus links with Hilbert schemes. 
    more » « less
  5. Gaetz, Christian (Ed.)